Anders Ohlsson 이 파이어 몽키로 만든 공학계산 결과 그래프 입니다.

보기만 해도 멋지군요 


Abstract: This article discusses how you can generate your own 3-dimensional mesh for visualizing mathematical functions using Delphi XE2 and FireMonkey.

    Prerequisites!

This article assumes that you are familiar with the basics of 3D graphics, including meshes and textures.

    The goal!

The goal is to graph a function like sin(x*x+z*z)/(x*x+z*z) in three dimensions using brilliant colors, as the image below shows:

Hide image
Click to see full-sized image

    Generating the mesh

The easiest way to generate a mesh is to use the Data.Points and Data.TriangleIndices of the TMesh object. However, these two properties are strings, and they get parsed in order to generate the mesh at runtime (and design time if populated at design time). This parsing is pretty time consuming, in fact, in this particular case about 65 times as slow as using the internal buffers. Therefore we will instead be using the non-published properties Data.VertexBuffer and Data.IndexBuffer.

In our example we will iterate along the X-axis from -30 to +30, and the same for the Z-axis. The function we're graphing gives us the value for Y for each point.

    Step 1: Generating the wire frame

The image below shows a sparse wire frame representing the surface f = exp(sin x + cos z). Shown in red is one of the squares. Each square gets split into two triangles in order to generate the mesh. The mesh is simply built up from all of the triangles that we get when we iterate over the XZ plane.

Hide image
Click to see full-sized image

We name the corners of the square P0, P1, P2 and P3:

Hide image
Triangles

The two triangles now become (P1,P2,P3) and (P3,P0,P1).

Given that u is somewhere on the X-axis, v is somewhere on the Z-axis, and that d is our delta step, the code to set up these four points in the XZ-plane becomes:

P[0].x := u;
P[0].z := v;

P[1].x := u+d;
P[1].z := v;

P[2].x := u+d;
P[2].z := v+d;

P[3].x := u;
P[3].z := v+d;

Now we calculate the corresponding function values for the Y component of each point. f is our function f(x,z).

P[0].y := f(P[0].x,P[0].z);
P[1].y := f(P[1].x,P[1].z);
P[2].y := f(P[2].x,P[2].z);
P[3].y := f(P[3].x,P[3].z);

The points are now fully defined in all three dimensions. Next, we plug them into the mesh.

with VertexBuffer do begin
  Vertices[0] := P[0];
  Vertices[1] := P[1];
  Vertices[2] := P[2];
  Vertices[3] := P[3];
end;

That part was easy. Now we need to tell the mesh which points make up which triangles. We do that like so:

// First triangle is (P1,P2,P3)
IndexBuffer[0] := 1;
IndexBuffer[1] := 2;
IndexBuffer[2] := 3;

// Second triangle is (P3,P0,P1)
IndexBuffer[3] := 3;
IndexBuffer[4] := 0;
IndexBuffer[5] := 1;

    Step 2: Generating the texture

In order to give the mesh some color, we create a texture bitmap that looks like this:

HSLmap

This is simply a HSL color map where the hue goes from 0 to 359 degrees. The saturation and value are fixed.

The code to generate this texture looks like this:

BMP := TBitmap.Create(1,360); // This is actually just a line
for k := 0 to 359 do
  BMP.Pixels[0,k] := HSLtoRGB(k/360,0.75,0.5);

    Step 3: Mapping the texture onto the wire frame

Finally, we need to map the texture onto the mesh. This is done using the TexCoord0 array. Each item in the TexCoord0 array is a point in a square (0,0)-(1,1) coordinate system. Since we're mapping to a texture that is just a line, our x-coordinate is always 0. The y-coordinate is mapped into (0,1), and the code becomes:

with VertexBuffer do begin
  TexCoord0[0] := PointF(0,(P[0].y+35)/45);
  TexCoord0[1] := PointF(0,(P[1].y+35)/45);
  TexCoord0[2] := PointF(0,(P[2].y+35)/45);
  TexCoord0[3] := PointF(0,(P[3].y+35)/45);
end;

    Putting it all together

The full code to generate the entire mesh is listed below:

function f(x,z : Double) : Double;
var
  temp : Double;
begin
  temp := x*x+z*z;
  if temp < Epsilon then
    temp := Epsilon;

  Result := -2000*Sin(temp/180*Pi)/temp;
end;

procedure TForm1.GenerateMesh;
const
  MaxX = 30;
  MaxZ = 30;
var
  u, v : Double;
  P : array [0..3] of TPoint3D;
  d : Double;
  NP, NI : Integer;
  BMP : TBitmap;
  k : Integer;
begin
  Mesh1.Data.Clear;

  d := 0.5;

  NP := 0;
  NI := 0;

  Mesh1.Data.VertexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*4;
  Mesh1.Data.IndexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*6;

  BMP := TBitmap.Create(1,360);
  for k := 0 to 359 do
    BMP.Pixels[0,k] := CorrectColor(HSLtoRGB(k/360,0.75,0.5));

  u := -MaxX;
  while u < MaxX do begin
    v := -MaxZ;
    while v < MaxZ do begin
      // Set up the points in the XZ plane
      P[0].x := u;
      P[0].z := v;
      P[1].x := u+d;
      P[1].z := v;
      P[2].x := u+d;
      P[2].z := v+d;
      P[3].x := u;
      P[3].z := v+d;

      // Calculate the corresponding function values for Y = f(X,Z)
      P[0].y := f(Func,P[0].x,P[0].z);
      P[1].y := f(Func,P[1].x,P[1].z);
      P[2].y := f(Func,P[2].x,P[2].z);
      P[3].y := f(Func,P[3].x,P[3].z);

      with Mesh1.Data do begin
        // Set the points
        with VertexBuffer do begin
          Vertices[NP+0] := P[0];
          Vertices[NP+1] := P[1];
          Vertices[NP+2] := P[2];
          Vertices[NP+3] := P[3];
        end;

        // Map the colors
        with VertexBuffer do begin
          TexCoord0[NP+0] := PointF(0,(P[0].y+35)/45);
          TexCoord0[NP+1] := PointF(0,(P[1].y+35)/45);
          TexCoord0[NP+2] := PointF(0,(P[2].y+35)/45);
          TexCoord0[NP+3] := PointF(0,(P[3].y+35)/45);
        end;

        // Map the triangles
        IndexBuffer[NI+0] := NP+1;
        IndexBuffer[NI+1] := NP+2;
        IndexBuffer[NI+2] := NP+3;
        IndexBuffer[NI+3] := NP+3;
        IndexBuffer[NI+4] := NP+0;
        IndexBuffer[NI+5] := NP+1;
      end;

      NP := NP+4;
      NI := NI+6;

      v := v+d;
    end;
    u := u+d;
  end;

  Mesh1.Material.Texture := BMP;
end;

    Demo application

You can find my demo application that graphs 5 different mathematical functions in CodeCentral. Here are a few screen shots from the application:

Func1Hide image
Click to see full-sized imageHide image
Click to see full-sized imageHide image
Click to see full-sized imageHide image
Click to see full-sized image

    Contact

Please feel free to email me with feedback to aohlsson at embarcadero dot com.



원본링크


http://edn.embarcadero.com/article/42007


번호 제목 글쓴이 날짜 조회 수
공지 [DelphiCon 요약] 코드사이트 로깅 실전 활용 기법 (Real-world CodeSite Logging Techniques) 관리자 2021.01.19 15414
공지 [UX Summit 요약] 오른쪽 클릭은 옳다 (Right Click is Right) 관리자 2020.11.16 13960
공지 [10.4 시드니] What's NEW! 신기능 자세히 보기 관리자 2020.05.27 16496
공지 RAD스튜디오(델파이,C++빌더) - 고객 사례 목록 관리자 2018.10.23 22048
공지 [데브기어 컨설팅] 모바일 앱 & 업그레이드 마이그레이션 [1] 관리자 2017.02.06 23267
공지 [전체 목록] 이 달의 기술자료 & 기술레터 관리자 2017.02.06 18921
공지 RAD스튜디오(델파이, C++빌더) - 시작하기 [1] 관리자 2015.06.30 39245
공지 RAD스튜디오(델파이,C++빌더) - 모바일 앱 개발 사례 (2020년 11월 업데이트 됨) 험프리 2014.01.16 174696
643 [베를린 U1] 윈도우 태스크바 알림의 뱃지를 제어할 수 있습니다. 험프리 2016.09.20 680
642 [업데이트][10.1 베를린] RAD Studio 10.1 베를린 서브스크립션 업데이트 1 [5] file 험프리 2016.09.19 1220
641 윈도우 10 Anniversary 업데이트와 RAD Studio file 관리자 2016.09.09 838
640 RAD 스튜디오(델파이, C++빌더) 웹개발 방법(WebBroker, IntraWeb) 험프리 2016.09.07 1829
639 TeeChart 컴포넌트를 통해 다양한 차트 및 그래프로 데이터를 출력할 수 있습니다. file 험프리 2016.08.30 5232
638 [발표자료] 20160830 나만의 C++애플리케이션 완성하기 with C++빌더 험프리 2016.08.26 1917
637 이 달의 기술자료 - 2016년 09월 file 험프리 2016.08.25 590
636 [마이그레이션 사례] 감리교신학대학교 험프리 2016.08.25 1436
635 인터베이스(Interbase) 에디션 안내 file 험프리 2016.08.25 1380
634 [로드맵] RAD 스튜디오 로드맵(2016년 8월) file 험프리 2016.08.12 1982
633 FireDAC 성능 비교(BDE, dbGO(ADO), dbExpress, FireDAC) 험프리 2016.08.09 1753
632 퀵레포트(Quick Report)에 사진 출력하기 험프리 2016.08.01 1864
631 BLOB 컬럼에 (이미지 등의)데이터 읽고 쓰기 험프리 2016.08.01 6093
630 퀵레포트 보고서 엑셀로 내보내기(저장하기) [1] 험프리 2016.08.01 1661
629 이 달의 기술자료 - 2016년 08월 file 험프리 2016.07.28 464
628 [마이그레이션] 써드파티 컴포넌트 마이그레이션 방안 안내 험프리 2016.07.26 1436
627 1차 공개 중고생 강의용 앱 소스 및 메뉴얼입니다. file 쭈니아빠 2016.07.16 762
626 이 달의 기술자료 - 2016년 07월 file 험프리 2016.06.30 2038
625 [발표자료] 20160624 소개합니다, RAD서버 관리자 2016.06.27 724
624 [추가된 문법 정리] - 배열 상수 초기화:델파이 XE7 추가 관리자 2016.06.03 3320