Anders Ohlsson 이 파이어 몽키로 만든 공학계산 결과 그래프 입니다.

보기만 해도 멋지군요 


Abstract: This article discusses how you can generate your own 3-dimensional mesh for visualizing mathematical functions using Delphi XE2 and FireMonkey.

    Prerequisites!

This article assumes that you are familiar with the basics of 3D graphics, including meshes and textures.

    The goal!

The goal is to graph a function like sin(x*x+z*z)/(x*x+z*z) in three dimensions using brilliant colors, as the image below shows:

Hide image
Click to see full-sized image

    Generating the mesh

The easiest way to generate a mesh is to use the Data.Points and Data.TriangleIndices of the TMesh object. However, these two properties are strings, and they get parsed in order to generate the mesh at runtime (and design time if populated at design time). This parsing is pretty time consuming, in fact, in this particular case about 65 times as slow as using the internal buffers. Therefore we will instead be using the non-published properties Data.VertexBuffer and Data.IndexBuffer.

In our example we will iterate along the X-axis from -30 to +30, and the same for the Z-axis. The function we're graphing gives us the value for Y for each point.

    Step 1: Generating the wire frame

The image below shows a sparse wire frame representing the surface f = exp(sin x + cos z). Shown in red is one of the squares. Each square gets split into two triangles in order to generate the mesh. The mesh is simply built up from all of the triangles that we get when we iterate over the XZ plane.

Hide image
Click to see full-sized image

We name the corners of the square P0, P1, P2 and P3:

Hide image
Triangles

The two triangles now become (P1,P2,P3) and (P3,P0,P1).

Given that u is somewhere on the X-axis, v is somewhere on the Z-axis, and that d is our delta step, the code to set up these four points in the XZ-plane becomes:

P[0].x := u;
P[0].z := v;

P[1].x := u+d;
P[1].z := v;

P[2].x := u+d;
P[2].z := v+d;

P[3].x := u;
P[3].z := v+d;

Now we calculate the corresponding function values for the Y component of each point. f is our function f(x,z).

P[0].y := f(P[0].x,P[0].z);
P[1].y := f(P[1].x,P[1].z);
P[2].y := f(P[2].x,P[2].z);
P[3].y := f(P[3].x,P[3].z);

The points are now fully defined in all three dimensions. Next, we plug them into the mesh.

with VertexBuffer do begin
  Vertices[0] := P[0];
  Vertices[1] := P[1];
  Vertices[2] := P[2];
  Vertices[3] := P[3];
end;

That part was easy. Now we need to tell the mesh which points make up which triangles. We do that like so:

// First triangle is (P1,P2,P3)
IndexBuffer[0] := 1;
IndexBuffer[1] := 2;
IndexBuffer[2] := 3;

// Second triangle is (P3,P0,P1)
IndexBuffer[3] := 3;
IndexBuffer[4] := 0;
IndexBuffer[5] := 1;

    Step 2: Generating the texture

In order to give the mesh some color, we create a texture bitmap that looks like this:

HSLmap

This is simply a HSL color map where the hue goes from 0 to 359 degrees. The saturation and value are fixed.

The code to generate this texture looks like this:

BMP := TBitmap.Create(1,360); // This is actually just a line
for k := 0 to 359 do
  BMP.Pixels[0,k] := HSLtoRGB(k/360,0.75,0.5);

    Step 3: Mapping the texture onto the wire frame

Finally, we need to map the texture onto the mesh. This is done using the TexCoord0 array. Each item in the TexCoord0 array is a point in a square (0,0)-(1,1) coordinate system. Since we're mapping to a texture that is just a line, our x-coordinate is always 0. The y-coordinate is mapped into (0,1), and the code becomes:

with VertexBuffer do begin
  TexCoord0[0] := PointF(0,(P[0].y+35)/45);
  TexCoord0[1] := PointF(0,(P[1].y+35)/45);
  TexCoord0[2] := PointF(0,(P[2].y+35)/45);
  TexCoord0[3] := PointF(0,(P[3].y+35)/45);
end;

    Putting it all together

The full code to generate the entire mesh is listed below:

function f(x,z : Double) : Double;
var
  temp : Double;
begin
  temp := x*x+z*z;
  if temp < Epsilon then
    temp := Epsilon;

  Result := -2000*Sin(temp/180*Pi)/temp;
end;

procedure TForm1.GenerateMesh;
const
  MaxX = 30;
  MaxZ = 30;
var
  u, v : Double;
  P : array [0..3] of TPoint3D;
  d : Double;
  NP, NI : Integer;
  BMP : TBitmap;
  k : Integer;
begin
  Mesh1.Data.Clear;

  d := 0.5;

  NP := 0;
  NI := 0;

  Mesh1.Data.VertexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*4;
  Mesh1.Data.IndexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*6;

  BMP := TBitmap.Create(1,360);
  for k := 0 to 359 do
    BMP.Pixels[0,k] := CorrectColor(HSLtoRGB(k/360,0.75,0.5));

  u := -MaxX;
  while u < MaxX do begin
    v := -MaxZ;
    while v < MaxZ do begin
      // Set up the points in the XZ plane
      P[0].x := u;
      P[0].z := v;
      P[1].x := u+d;
      P[1].z := v;
      P[2].x := u+d;
      P[2].z := v+d;
      P[3].x := u;
      P[3].z := v+d;

      // Calculate the corresponding function values for Y = f(X,Z)
      P[0].y := f(Func,P[0].x,P[0].z);
      P[1].y := f(Func,P[1].x,P[1].z);
      P[2].y := f(Func,P[2].x,P[2].z);
      P[3].y := f(Func,P[3].x,P[3].z);

      with Mesh1.Data do begin
        // Set the points
        with VertexBuffer do begin
          Vertices[NP+0] := P[0];
          Vertices[NP+1] := P[1];
          Vertices[NP+2] := P[2];
          Vertices[NP+3] := P[3];
        end;

        // Map the colors
        with VertexBuffer do begin
          TexCoord0[NP+0] := PointF(0,(P[0].y+35)/45);
          TexCoord0[NP+1] := PointF(0,(P[1].y+35)/45);
          TexCoord0[NP+2] := PointF(0,(P[2].y+35)/45);
          TexCoord0[NP+3] := PointF(0,(P[3].y+35)/45);
        end;

        // Map the triangles
        IndexBuffer[NI+0] := NP+1;
        IndexBuffer[NI+1] := NP+2;
        IndexBuffer[NI+2] := NP+3;
        IndexBuffer[NI+3] := NP+3;
        IndexBuffer[NI+4] := NP+0;
        IndexBuffer[NI+5] := NP+1;
      end;

      NP := NP+4;
      NI := NI+6;

      v := v+d;
    end;
    u := u+d;
  end;

  Mesh1.Material.Texture := BMP;
end;

    Demo application

You can find my demo application that graphs 5 different mathematical functions in CodeCentral. Here are a few screen shots from the application:

Func1Hide image
Click to see full-sized imageHide image
Click to see full-sized imageHide image
Click to see full-sized imageHide image
Click to see full-sized image

    Contact

Please feel free to email me with feedback to aohlsson at embarcadero dot com.



원본링크


http://edn.embarcadero.com/article/42007


번호 제목 글쓴이 날짜 조회 수
공지 [DelphiCon 요약] 코드사이트 로깅 실전 활용 기법 (Real-world CodeSite Logging Techniques) 관리자 2021.01.19 15450
공지 [UX Summit 요약] 오른쪽 클릭은 옳다 (Right Click is Right) 관리자 2020.11.16 13964
공지 [10.4 시드니] What's NEW! 신기능 자세히 보기 관리자 2020.05.27 16501
공지 RAD스튜디오(델파이,C++빌더) - 고객 사례 목록 관리자 2018.10.23 22057
공지 [데브기어 컨설팅] 모바일 앱 & 업그레이드 마이그레이션 [1] 관리자 2017.02.06 23268
공지 [전체 목록] 이 달의 기술자료 & 기술레터 관리자 2017.02.06 18924
공지 RAD스튜디오(델파이, C++빌더) - 시작하기 [1] 관리자 2015.06.30 39260
공지 RAD스튜디오(델파이,C++빌더) - 모바일 앱 개발 사례 (2020년 11월 업데이트 됨) 험프리 2014.01.16 174727
643 [RAD 서버] 비콘펜스 소개 및 데모(실내외 길찾기, 지역진입 감지하기) [1] 험프리 2017.04.13 968
642 RAD스튜디오 로드맵 - 2019년 5월 관리자 2019.05.24 965
641 [따라하기] 인공지능 오목게임(5) - 바둑알 놓기 [2] file 대화마을 2017.09.22 963
640 윈도우10에서 활용 가능한 델파이만의 5가지 기능들 관리자 2020.02.04 960
639 엔터프라이즈 커넥터로 'VCL 애플리케이션에서 엑셀 데이터 가져오기&편집하기' file 김원경 2019.09.27 955
638 델파이/C++빌더 개발자를 위한 웹 개발 with ExtJS! 관리자 2018.06.04 955
637 [개발환경] Git 설치와 저장소 구성(1) 험프리 2019.06.20 949
636 [마이그레이션 사례] 워프비전(64-bit 애플리케이션) 험프리 2019.05.24 948
635 [FMX] 안드로이드 패키지 버전 구하기 튜토리얼 file 험프리 2017.09.01 945
634 모바일 앱 라이프 사이클 이벤트 처리하기(앱 완전 구동 후 실행하기) [1] Humphery 2015.04.09 944
633 [스타터] C++빌더로 2D 게임을 완성해보세요 (소스코드 제공) file 관리자 2016.10.28 943
632 [시애틀] 비콘펜스(BeaconFence)등 새로운 오픈 소스와 컴포넌트 패키지를 IDE에서 직접 확보할 수 있습니다. Humphery 2015.09.07 942
631 [VCL] 화면의 특정영역을 확대하는 “돋보기” 기능 구현방법 소개 file 험프리 2017.09.01 938
630 [FMX] TListView 더보기 버튼 구현하기 험프리 2017.09.20 937
629 [10.4 시드니 신기능] 컨트롤 개별 VCL 스타일 적용(Per-Control Style) 적용 험프리 2020.05.19 929
628 [VCL] TaskDialog 컴포넌트 소개 Humphery 2015.02.03 926
627 [XE8] 오프라인에서 도움말을 볼 수 있습니다.(CHM 형식) Humphery 2015.04.17 926
626 XE8 새로운 기능외의 개선사항 Humphery 2015.04.16 925
625 엔터프라이즈 커넥터로 '트위터' 연동하기 file 관리자 2017.07.17 922
624 [10.4 시드니][패치] RAD스튜디오 10.4 '두 번째 패치(Patch 2)'를 다운로드 받으세요! 관리자 2020.07.20 917